

[image:]

Guide to Migrating from Sybase ASA to SQL Server 2008

SQL Server Technical Article

Writers: Arthur Alchangian (DB Best Technologies), Galina Shevchenko (DB Best Technologies), Yuri Rusakov (DB Best Technologies)

Technical Reviewer: Dmitry Balin (DB Best Technologies)

Published: August 2009
Applies to: SQL Server 2008 and SQL Server 2008 R2

Summary: This white paper explores challenges that arise when you migrate from a Sybase Adaptive Server Anywhere (ASA) database of version 9 or later to SQL Server 2008. It describes the implementation differences of database objects, SQL dialects, and procedural code between the two platforms.

Created by: DB Best Technologies LLC	
P.O. Box 7461, Bellevue, WA 98008
Tel.: (408) 202-4567
E-mail: info@dbbest.com
Web: www.dbbest.com

Copyright
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2009 Microsoft Corporation. All rights reserved.
Microsoft and SQL Server are registered trademarks of Microsoft Corporation in the United States and other countries.
The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents
Introduction	4
Conversion of Data Types	5
Stored Procedures	7
CALL Statements	7
Returning Result Sets from a Stored Procedure	8
Defining Parameters	12
Selecting a Returned Value in the Calling Environment	15
Exception Handling	15
Flow Control Constructs	23
Cursors	31
User-Defined Functions	34
CREATE FUNCTION Statement	34
Statements	35
FROM Clause	35
Common Table Expressions	48
DML Statements	50
Migrating Sybase ASA Standard Functions	56
Equivalent Functions	56
Emulated Functions	56
Conclusion	74
About DB Best Technologies	74

[bookmark: _Toc237661244]Introduction
This migration guide outlines problems and solutions for migrating from Sybase ASA to the Microsoft® SQL Server® 2008 database software.
This guide explains the data type mapping and adds remarks about the related conversion issues, explores the challenges you might encounter when migrating from Sybase ASA to SQL Server 2008, and offers possible solutions and examines Sybase ASA system function references, divided into equivalent functions and emulated functions.

[bookmark: _Toc237661245]Conversion of Data Types
This section covers data types mapping between Sybase ASA and SQL Server 2008. The following table shows Sybase ASA data types and their equivalents in SQL Server 2008 including differences in data type length and ranges.

	Sybase ASA

	SQL Server 2008

	char[(n)] 32767
varchar[(n)] 32767
	varchar[(n)] n<=8000
varchar(max) n>8000

	nchar[(n)] 8191
nvarchar[(n)] 8191
	nvarchar[(n)] n<=4000
nvarchar(max) n>4000

	text
long varchar
	varchar(max)

	tinyint 0…255
	tinyint 0…255

	smallint 2^15 – 1
	smallint 2^15 - 1

	unsigned smallint 2^16 - 1
	integer 2^31 – 1

	integer 2^31 – 1
	integer 2^31 - 1

	unsigned integer 2^32 - 1
	bigint 2^63 – 1

	bigint 2^63 - 1
	bigint 2^63 - 1

	unsigned bigint 2^64 – 1
	

	
	

	date (January 1, 0001, through December 31, 9999)
	date (January 1, 0001, through December 31, 9999)

	datetime
smalldatetime
timestamp
 (January 1, 0001 00:00:00.000000, through December 31, 9999 23:59:59.999999)
	datetime2
timestamp
 (January 1, 0001 00:00:00.0000000, through December 31, 9999 23:59:59.9999999)

	time
	time

	money +999,999,999,999,999.9999
	money +922,337,203,685,477.5807
numeric(19,4) +999,999,999,999,999.9999

	smallmoney +999,999.9999
	smallmoney +214,748.3647
numeric(10,4) +999,999.9999

	decimal[(p[,s])] 127
numeric[(p[,s])] 127
	decimal[(p[,s])] p<=38
numeric[(p[,s])] p<=38
float(53) p>38
maybe varchar(p) p>53

	float[(precision)]
double
real
	float[(precision)]
real

	binary[(n)] 32767
varbinary[(n)] 32767
	varbinary[(n)] n<=8000
varbinary(max) n>8000

	long binary
image
	
varbinary(max)

	Bit
	Bit

	varbit 32767
long varbit 32767
	There are a few options here:
· Use varbinary() and emulate type methods
· Create CLR UDT with methods
· Create CLR aggregate

[bookmark: _Toc237661246]Stored Procedures
This section discusses differences between the SQL procedural language in Sybase ASA and Microsoft SQL Server. This includes the creation and calling of stored procedures as well as working with local variables, cursors, and control-of-flow statements.
[bookmark: _Toc237661247]CALL Statements
This section covers possible issues which can appear while converting Sybase ASA CALL statements and offers possible solutions.
Issue: Syntax for Calling Procedures
Sybase ASA uses the CALL statement to invoke a procedure.

Sybase ASA example:
CREATE PROCEDURE new_dept (
 IN id INT,
 IN name CHAR(35),
 IN head_id INT)
BEGIN
 INSERT INTO DBA.department (dept_id, dept_name, dept_head_id)
 VALUES (id, name, head_id);
END

CALL new_dept(210, 'Eastern Sales', 902);

Solution:
Convert Sybase ASA CALL statements to Transact-SQL EXEC statements.

SQL Server example:
CREATE PROCEDURE new_dept (
 @id INT,
 @name CHAR(35),
 @head_id INT)
BEGIN
 INSERT INTO DBO.department (dept_id, dept_name, dept_head_id)
 VALUES (@id, @name, @head_id);
END

EXEC new_dept(210, 'Eastern Sales', 902);

[bookmark: _Toc237661248]Returning Result Sets from a Stored Procedure
This section contains descriptions of issues that can appear when you convert code that returns result sets from a stored procedure and possible solutions.

Issue: RESULT Keyword
In Sybase ASA, you can use the RESULT keyword to return a result set from a stored procedure and then select data from the result set. To do this, you define the keyword as a return parameter in the stored procedure.

Sybase ASA examples:
Example 1:
CREATE PROCEDURE "DBA"."ManageContacts"(IN action char(1),
IN contact_ID integer)
RESULT(ID integer,
Surname char(20),
GivenName char(20),
Street char(30),
City char(20),
State char(16)
)
BEGIN
 CASE action
 WHEN 'S' THEN
 SELECT * FROM DBA.Contacts
 WHERE Contacts.ID=contact_ID
 WHEN 'D' THEN
 DELETE FROM DBA.Contacts
 WHERE Contacts.ID=contact_ID
 END CASE
END

SELECT t.Surname, t.GivenName FROM DBA.ManageContacts('S', 1) t

Example 2:
CREATE PROCEDURE "DBA"."ShowContactsByCity"(IN city char(20))
RESULT(ID integer,
Surname char(20),
GivenName char(20),
Street char(30),
City char(20),
State char(16)
)
BEGIN
 SELECT ID, Surname, GivenName, Street, City, State
 FROM DBA.Contacts
 WHERE City=city
END

SELECT t.Surname, t.GivenName, t.Street, t.City, t.State
FROM DBA.ShowContactsByCity('Atlanta') t

Solution:
Replace the RESULT keyword with a temporary table defined in a calling code and insert the returned result set into this temporary table. Then you can execute queries on the table and apply WHERE clauses and other SELECT features to limit the result set.
If there are no Data Manipulation Language (DML) statements in the source stored procedure body, you can use a table-valued function as an alternative to the procedure. Note that SQL Server does not allow the use of side-effecting DML operators within a function.

SQL Server examples:
Example 1:
CREATE PROCEDURE DBO.ManageContacts(@action char(1),
@contact_ID int)
BEGIN
 IF @action = 'S'
 SELECT * FROM DBO.Contacts
 WHERE Contacts.ID=@contact_ID
 IF @action = 'D'
 DELETE FROM DBO.Contacts
 WHERE Contacts.ID=@contact_ID
END

CREATE TABLE #temp_result(
ID int,
Surname char(20),
GivenName char(20),
Street char(30),
City char(20),
State char(16)
)

INSERT INTO #temp_result
exec dbo.ManageContacts 'S', 1

SELECT Surname, GivenName FROM #temp_result

Example 2:
This example does not contain DML operators that change constant tables, so it can be emulated using table-valued functions in SQL Server:
CREATE FUNCTION DBO.ShowContactsByCity(@city char(20))
RETURNS @result TABLE
(
ID int,
Surname char(20),
GivenName char(20),
Street char(30),
City char(20),
[State] char(16)
)
AS
BEGIN
 INSERT @result
 SELECT ID, Surname, GivenName, Street, City, [State]
 FROM DBO.Contacts
 WHERE City=@city
 RETURN
END

SELECT Surname, GivenName, Street, City, [State]
FROM DBO.ShowContactsByCity('Atlanta');

Issue: NO RESULT SET Clause
The NO RESULT SET clause declares that no result set is returned by this procedure. This is useful when an external environment needs to know that a procedure does not return a result set.

Solution:
SQL Server does not have means to indicate whether the result set is returned from a procedure. So, the only solution is to omit this clause and check the returned results by other Transact-SQL means, if required.
[bookmark: _Toc237661249]Defining Parameters
This section contains description of issues that can appear when you convert parameters of stored procedures and possible solutions.
Issue: IN, OUT, and INOUT Keywords to Define Parameters
The keywords IN, OUT, and INOUT are used in Sybase ASA syntax.

Sybase ASA example:
CREATE PROCEDURE AverageSalary(
 IN dept INTEGER,
 OUT avgsal NUMERIC (20,3))
BEGIN
 SELECT AVG(salary)
 INTO avgsal
 FROM employee where department_id = dept;
END

Solution:
Ignore the keyword IN, and replace OUT and INOUT keywords with the OUTPUT keyword in SQL Server. OUTPUT parameters combine functions of both input and output parameters in SQL Server syntax.

SQL Server example:
CREATE PROCEDURE AverageSalary(
 @dept INT,
 @avgsal NUMERIC (20,3) OUTPUT)
AS
BEGIN
 SELECT @avgsal = AVG(salary)
 FROM employee where department_id = @dept;
END

Issue: DEFAULT Parameters
The DEFAULT keyword provides a default value for the parameter in Sybase ASA.

Sybase ASA example:
CREATE PROCEDURE CustomerProducts(IN cust CHAR(50) DEFAULT NULL)
RESULT (product_id INTEGER, quantity INTEGER)
BEGIN
 IF cust IS NULL THEN
 RETURN;
 ELSE
 SELECT product_id, quantity
 FROM product
 WHERE customer = cust
 ORDER BY product_id;
 END IF;
END

Solution:
Replace the DEFAULT keyword with “=” sign.

SQL Server example:
CREATE PROCEDURE CustomerProducts(@cust char(50) = NULL)
 as
BEGIN
 IF @cust IS NULL
 RETURN;
 ELSE
 SELECT product_id, quantity
 FROM product
 WHERE customer = @cust
 ORDER BY product_id;
END

[bookmark: _Toc237661250]Selecting a Returned Value in the Calling Environment
This section covers issues which can appear while converting code selecting returned values of routines and offers possible solutions.
Issue: Different Syntax for Selecting the Value Returned from a Stored Procedure by a RETURN Statement
SQL Server syntax does not support the expression in the following form:
returnvalue = CALL myproc();

Sybase ASA example:
CREATE VARIABLE v1 CHAR(20);
CREATE VARIABLE returnval INTEGER;
returnval = CALL SampleProc(v1) ;

Solution:
Use SQL Server syntax to select the value returned from a stored procedure:
exec @returnvalue = myproc

SQL Server example:
DECLARE @v1 CHAR(20)
DECLARE @returnval INT
EXEC @returnval = SampleProc @v1

[bookmark: _Toc237661251]Exception Handling
This section covers conversion of exception handling and contains possible solutions for conversion issues.
Issue: ON EXCEPTION RESUME Clause
If the ON EXCEPTION RESUME clause appears in the CREATE PROCEDURE or CREATE FUNCTION statement in Sybase ASA, the routine carries on executing after an error or exits, depending on ON_TSQL_ERROR option settings. SQL Server does not have an ON EXCEPTION RESUME clause in the CREATE PROCEDURE statement. Thus, the procedure stops executing after an error; there is no option to skip the statement that caused the error and then resume.

Sybase ASA example:
CREATE PROCEDURE "DBA"."OuterProc"()
ON EXCEPTION RESUME
BEGIN
 DECLARE res CHAR(5);
 MESSAGE 'Hello from OuterProc.' TO CLIENT;
 CALL InnerProc();
 SET res=SQLSTATE;
 IF res='52003' THEN
 MESSAGE 'SQLSTATE set to ',
 res, ' in OuterProc.' TO CLIENT;
 END IF
END

CREATE PROCEDURE "DBA"."InnerProc"()
ON EXCEPTION RESUME
BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE '52003';
 MESSAGE 'Hello from InnerProc.' TO CLIENT;
 SIGNAL column_not_found;
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE, ' in InnerProc.' TO CLIENT;
END

CALL OuterProc();

Solution:
This Sybase ASA behavior can be emulated by the SQL Server TRY…CATCH block. To use this block, place the code that can generate an error into a BEGIN TRY…END TRY block. Then place the code that follows the code that can generate an error into a BEGIN CATCH…END CATCH block.
 To emulate Sybase ASA behavior completely, put each statement that can generate an error in TRY block and then add an empty CATCH block after each of them.

SQL Server example:
To emulate Sybase ASA error handling similar to this example, create a message row in sys.messages system table in the master database in SQL Server. User-defined error messages must have a message_id value that is greater than 50000. Use sp_addmessage system procedure to create a message, for example:

EXEC sp_addmessage '52003', 16, 'column_not_found'

CREATE PROCEDURE OuterProc
AS
BEGIN
BEGIN TRY
 DECLARE @res CHAR(10);
 PRINT 'Hello from OuterProc.';
 EXEC InnerProc;
END TRY
BEGIN CATCH
 SELECT @res=ERROR_NUMBER();
 IF @res=CAST (52003 as CHAR(10))
 PRINT 'SQLSTATE set to ' + @res + ' in OuterProc.';
END CATCH
END;

CREATE PROCEDURE InnerProc
AS
BEGIN
 PRINT 'Hello from InnerProc.';
 RAISERROR (52003, 16, 1)
 PRINT 'SQLSTATE set to ' + CAST (ERROR_NUMBER() as VARCHAR (10)) + 'in InnerProc.';
END

EXEC OuterProc;

Issue: DECLARE EXCEPTION and SIGNAL Statement
In Sybase ASA, the DECLARE statement in the procedure declares a symbolic name for one of the predefined SQLSTATE values associated with error conditions already known to the server. The SIGNAL statement generates an error condition from within the procedure.

Sybase ASA example:
CREATE PROCEDURE SampleProc()
 BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE '52003';
 SIGNAL column_not_found;
END

Solution:
Ignore the DECLARE statement. Use RAISERROR statement instead of SIGNAL to generate an error from within the procedure. A severity level value that is greater than 10 denotes errors; a value that is lower than or equal to 10 denotes informational messages, which can be used to emulate Sybase ASA warnings.

SQL Server example:
CREATE PROCEDURE SampleProc
AS
BEGIN
 RAISERROR ('column_not_found', 16, 1)
END

Issue: Exception Handling
In Sybase ASA, the EXCEPTION statement is used to handle errors.

Sybase ASA example:
CREATE PROCEDURE SampleProc()
BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE '52003';
 IF <condition> THEN
 SIGNAL column_not_found;
 END IF;
	EXCEPTION
		WHEN column_not_found THEN
			<statements>
 WHEN OTHERS THEN
 <other statements>
	END
END

Solution:
Replace the EXCEPTION block with a TRY…CATCH block in SQL Server.

SQL Server example:
CREATE PROCEDURE SampleProc
AS
BEGIN
 BEGIN TRY
 IF <condition>
 RAISERROR ('column_not_found', 16, 1)
	END TRY
	BEGIN CATCH
		IF ERROR_MESSAGE() = 'column_not_found'
		BEGIN
			<statements>
	 	END
		ELSE
		 <other statements>
	END CATCH
END

Issue: RESIGNAL Statement
The RESIGNAL statement passes the exception on to a higher-level exception handler.

Sybase ASA example:
Suppose that the procedure from the previous example has the following EXCEPTION block:
…
EXCEPTION
 WHEN column_not_found THEN
 <statements>
 WHEN OTHERS THEN
 RESIGNAL;

Solution:
Declare a local variable to store the text of the generated exception. Assign this variable the value of the SQL Server ERROR_MESSAGE() function in the beginning of the catch block. Repeat the RAISERROR statement that generated the exception, and then pass the variable to it as it is shown in the following example.

SQL Server example:
CREATE PROCEDURE SampleProc
AS
BEGIN
 DECLARE @message NVARCHAR (4000)
 BEGIN TRY
 IF <condition>
 RAISERROR ('column_not_found', 16, 1)
	END TRY
	BEGIN CATCH
		IF ERROR_MESSAGE() = 'column_not_found'
		BEGIN
			<statements>
	 	END
		ELSE
		 SET @message=ERROR_MESSAGE()
 RAISERROR (@message, 16, 1)
	END CATCH
END

[bookmark: _Toc237661252]Flow Control Constructs
This section covers conversion of flow-control constructs from Sybase ASA to SQL Server. It contains possible issues that can appear during the conversion and offers solutions.
Issue: BEGIN ATOMIC Statement
An atomic statement is a statement executed completely or not at all. If the BEGIN statement is atomic, the statement is executed either in its entirety or not at all.

Sybase ASA example:
BEGIN ATOMIC
 UPDATE employee
 SET manager_ID = 501
 WHERE emp_ID = 467;
 UPDATE employee
 SET birth_date = 'bad_data';
END

Solution:
Use the Transact-SQL statements BEGIN TRAN[SACTION] and END TRAN[SACTION] to denote that the statements must be executed entirely.

SQL Server example:
DECLARE @TranName VARCHAR(20);
SELECT @TranName = 'MyTransaction';

BEGIN
 BEGIN TRANSACTION @TranName
		UPDATE employee
		SET manager_ID = 501
		WHERE emp_ID = 467;
		UPDATE employee
		SET birth_date = 'bad_data';
 COMMIT TRANSACTION @TranName
END

Issue: IF Statement
Sybase ASA and SQL Server have different syntax for the IF statement.

Sybase ASA example:
if (1>2)
 then select 'A'; select 'B';
 elseif (2>3) then select 'C'; select 'D';
 elseif (3>4) then select 'E'; select 'F';
 else select 'G'; select 'H';
end if;

Solution:
The Sybase ASA IF statement can be easily emulated in SQL Server.

SQL Server example:
if (1>2)
 begin select 'A' select 'B' end
 else if (2>3) begin select 'C' select 'D' end
 else if (3>4) begin select 'E' select 'F' end
 else begin select 'G' select 'H' end

Issue: CASE Statement
Sybase ASA and SQL Server have different syntax for the CASE statement.

Sybase ASA example:
case int_value
when 1 then select 'A'; select 'AA';
when 2 then select 'B';
when 1 then select 'A1'; select 'A2'; -- ignored
when 3 then select 'C';
else select 'NULL';
end case;

Solution:
CASE statements can be emulated by using SQL Server IF statements.

SQL Server example:
if @int_value=1 begin select 'A' select 'AA' end
 else if @int_value=2 begin select 'B' end
 else if @int_value=1 begin select 'A1' select 'A2' end
 else if @int_value=3 begin select 'C' end
 else begin select 'NULL' end

Issue: LOOP Statements
SQL Server does not have the LOOP keyword.

Sybase ASA example:
...
SET i = 1;
WHILE i <= 10 LOOP
 INSERT INTO Counters(number) VALUES (i);
 SET i = i + 1;
END LOOP;
...

Solution:
If a LOOP statement in Sybase ASA code is a WHILE LOOP, remove the LOOP keyword and enclose the statements inside WHILE in a BEGIN…END block.

SQL Server example:
...
SET @i = 1
WHILE @i <= 10
BEGIN
 INSERT INTO Counters(number) VALUES (@i);
 SET @i = @i + 1
END
...

Issue: LEAVE Statement and Labeled Loop
SQL Server does not have similar statements. The first Sybase ASA example shows a LEAVE statement, and the second example shows nested loops.

Sybase ASA examples:
Example 1:
SET i = 1;
lbl:
LOOP
 INSERT
 INTO Counters(number)
 VALUES (i);
 IF i >= 10 THEN
 LEAVE lbl;
 END IF;
 SET i = i + 1;
END LOOP lbl

Example 2:
outer_loop:
LOOP
 SET i = 1;
 inner_loop:
 LOOP
 ...
 SET i = i + 1;
 IF i >= 10 THEN
 LEAVE outer_loop
 END IF
 END LOOP inner_loop
END LOOP outer_loop

Solution:
If a LOOP statement in Sybase ASA code is a labeled loop that contains a LEAVE statement, use a Transact-SQL WHILE … BREAK statement to achieve similar results. If there are nested loops and a LEAVE statement inside a nested loop, use a Transact-SQL GOTO statement.

SQL Server examples:
Example 1:
SET @i = 1;
WHILE 1=1
BEGIN
 INSERT INTO Counters(number) VALUES (@i);
 IF @i >= 10
 break
 SET @i = @i + 1;
END

Example 2:
DECLARE @i INT
WHILE 1=1
BEGIN
 SET @i = 1;
 WHILE 1=1
 BEGIN
 SET @i = @i + 1;
 IF @i >= 10
 BEGIN
 GOTO _mark;
 END
 END
END
_mark:

Issue: FOR Cursor Loop
SQL Server does not have a comparable statement.

Sybase ASA example:
FOR cur_loop AS cur CURSOR FOR
SELECT emp_lastname
FROM employee
DO
 CALL find_name(emp_lastname);
END FOR;

Solution:
The FOR cursor loop can be replaced by a set of Transact-SQL statements including declaring and opening a cursor and fetching the cursor row values into local variables in a WHILE loop.

SQL Server example:
DECLARE cur CURSOR FOR
SELECT emp_lastname
FROM employee

DECLARE @emp_lastname VARCHAR(50)

OPEN cur

FETCH NEXT FROM cur INTO @emp_lastname

WHILE @@FETCH_STATUS = 0
BEGIN
 EXEC find_name @emp_lastname
 FETCH NEXT FROM cur INTO @emp_lastname
END

[bookmark: _Toc237661253]Cursors
This section contains description of issues that can appear when you convert Sybase ASA cursors and possible solutions.
Issue: WITH HOLD Clause
The SQL Server OPEN statement for opening a cursor does not have a WITH HOLD clause.

Sybase ASA example:
OPEN cursor_name
WITH HOLD

Solution:
In Sybase ASA, all cursors are automatically closed at the end of the current transaction (COMMIT or ROLLBACK). The optional WITH HOLD clause keeps the cursor open for subsequent transactions. To emulate this Sybase ASA behavior you can use cursor variables. In SQL Server, cursor remains open until it is explicitly closed.
Issue: ISOLATION LEVEL Clause
He SQL Server OPEN statement for opening a cursor does not have an ISOLATION LEVEL clause.

Sybase ASA example:
OPEN cursor_name
ISOLATION LEVEL 2

Solution:
The transaction locking behavior of a specific cursor in SQL Server is determined by combining the locking behaviors of the cursor concurrency setting, any locking hints specified in the cursor SELECT, and transaction isolation level options.
Issue: "No Data" Cursor State
Sybase ASA requires a handler for an exception with SQLSTATE value 02000 to detect a "No Data" cursor state.

Sybase ASA example:
CREATE PROCEDURE EmployeeName()
BEGIN
 DECLARE no_data
 EXCEPTION FOR SQLSTATE '02000';

 DECLARE last_name CHAR(50);

 DECLARE cur CURSOR FOR
 SELECT emp_lastname
 FROM employee;

 OPEN ThisCompany;
 EmployeeLoop:
 LOOP
 FETCH NEXT cur
 INTO last_name;
 IF SQLSTATE = no_data THEN
 LEAVE EmployeeLoop;
 END IF;
 CALL find_name(emp_lastname);
 END LOOP EmployeeLoop;
 CLOSE ThisCompany;
END

Solution:
Instead of checking the SQLSTATE value, check the @@FETCH_STATUS system variable value in SQL Server. If it is equal to 0, continue fetching the cursor rows in a WHILE loop.

SQL Server example:
CREATE PROCEDURE EmployeeName
AS
BEGIN
	DECLARE @last_name VARCHAR(50)
	
	DECLARE cur CURSOR FOR
	SELECT emp_lastname
	FROM employee

	OPEN cur

	FETCH NEXT FROM cur INTO @last_name

	WHILE @@FETCH_STATUS = 0
	BEGIN
		EXEC find_name @last_name
		FETCH NEXT FROM cur INTO @last_name
	END
	
	CLOSE emp
	DEALLOCATE emp
END

[bookmark: _Toc237661254]User-Defined Functions
This section discusses differences between the syntax of user-defined functions in Sybase ASA and Microsoft SQL Server.
[bookmark: _Toc237661255]CREATE FUNCTION Statement
This section covers issues and solutions for conversion of CREATE FUNCTION statement.
Issue: [NOT] DETERMINISTIC Clause
SQL Server CREATE FUNCTION statement does not have [NOT] DETERMINISTIC clause. SQL Server automatically detects if the function is deterministic or not.

Solution:
Skip this clause. SQL Server automatically analyzes the body of Transact-SQL functions and evaluates whether the function is deterministic.

[bookmark: _Toc237661256]Statements
This section discusses differences between the SQL statements in Sybase ASA and Microsoft SQL Server. This includes selection of data, DML statements, and common table expressions.
[bookmark: _Toc237661257]FROM Clause
This section covers issues and solutions for conversion of FROM clauses.
Issue: FORCE INDEX (index-name)
SQL Server does not have a FORCE INDEX keyword in the FROM clause.

Sybase ASA example:
SELECT OrderDate, SalesRepresentative
FROM SalesOrders
FORCE INDEX (IX_SalesRepresentative_EmployeeID)

Solution:
Replace this clause with the WITH (INDEX (index_value [,...n])) table hint in SQL Server.

SQL Server example:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders
WITH (INDEX (IX_SalesRepresentative_EmployeeID))

Issue: WITH(column-name data-type, ...) in Selecting from a Procedure
The WITH clause provides a way of specifying column name aliases for the procedure result set. The WITH clause is not used with stored procedures in SQL Server.

Sybase ASA example:
SELECT sp.CompanyName FROM DBA.ShowCustomers() WITH (ID integer,CompanyName char(30)) sp

Solution:
Insert the results returned from the stored procedure into a temporary table. Then perform select operations on the temporary table. Ignore the WITH clause.

SQL Server example:
create table #temp(
ID int,
CompanyName char(30)
)

INSERT INTO #temp
EXEC dbo.ShowCustomers

SELECT CompanyName FROM #temp

Issue: Lateral Derived Table
Sybase ASA provides a lateral derived table if you want to use an outer reference in the FROM clause. SQL Server does not have the LATERAL keyword and does not support the concept of lateral derived tables.

Sybase ASA example:
SELECT v.Product_id, v.BeginDate,
 CONVERT(date, CASE
 WHEN l.LastDate IS NULL THEN NULL ELSE DateAdd(dd, -1, l.LastDate)
 END) AS EndDate,
 v.Value
 FROM ProductValue v,
 LATERAL (
 SELECT Min(BeginDate) as LastDate
 FROM ProductValue
 WHERE Product_id = v.Product_id AND BeginDate > v.BeginDate
) as l;

Solution:
Rewrite the query with a lateral derived table by means of SQL Server outer joins. The outer and inner tables are joined and the condition specified in the WHERE clause is converted to an ON clause.

SQL Server example:
SELECT v.Product_id, v.BeginDate,
 CONVERT(date, CASE
 WHEN Min(l.BeginDate) IS NULL THEN NULL ELSE DateAdd(dd, -1, Min(l.BeginDate))
 END) AS EndDate,
 v.Value
 FROM ProductValue v
 LEFT OUTER JOIN ProductValue l
 ON l.Product_id = v.Product_id AND l.BeginDate > v.BeginDate
	GROUP BY v.Product_id, v.BeginDate, v.Value;

Issue: FASTFIRSTROW Table Hint
The FASTFIRSTROW table hint helps to reduce the time it takes to fetch the first row of the query's result.

Sybase ASA example:
SELECT Year, Quarter, Code, Amount from FinancialData WITH (FASTFIRSTROW);

Solution:
The Sybase ASA FASTFIRSTROW hint is equivalent to OPTION (FAST 1) in SQL Server. Replace FASTFIRSTROW with the OPTION (FAST 1) query hint.

SQL Server example:
SELECT Year, Quarter, Code, Amount from FinancialData OPTION (FAST 1)

Issue: FIRST Keyword
The FIRST keyword is used in Sybase ASA to limit the number of rows included in the result set of a query.

Sybase ASA example:
SELECT FIRST *
FROM employee
ORDER BY emp_lname

Solution:
The keyword TOP with a value equal to 1 can be used in SQL Server instead of FIRST.

SQL Server example:
SELECT TOP 1 *
FROM employee
ORDER BY emp_lname

Issue: START AT Keyword
The START AT keyword used with TOP provides an offset during results selection in Sybase ASA. SQL Server does not have the means to specify an offset.

Sybase ASA example:
SELECT TOP 2 START AT 5 *
FROM employee
ORDER BY emp_lname DESC

Solution:
Replace the query with a common table expression and a ROW_NUMBER () OVER (order_by_clause) construct that returns the sequential number of a row within a result set.

SQL Server example:
WITH Ordered AS
(SELECT *,
ROW_NUMBER() OVER (order by emp_lname desc)as RowNumber
FROM employee)

SELECT top 2 emp_id,emp_fname,emp_lname,job,department_id,manager_id
FROM Ordered
WHERE RowNumber >=5

Issue: EXCEPT ALL and INTERSECT ALL Operators
In Sybase ASA, both EXCEPT and INTERSECT take the ALL modifier, which prevents the elimination of duplicate rows from the result set. SQL Server EXCEPT and INTERSECT operators return distinct values and do not take an ALL modifier.

Sybase ASA examples:

Example 1:
SELECT col1, col2
FROM T1
INTERSECT ALL
SELECT col1, col2
FROM T2

Example 2:
SELECT col1, col2
FROM T1
EXCEPT ALL
SELECT col1, col2
FROM T2

Solution:
In SQL Server, emulate INTERSECT ALL and EXCEPT ALL by using an additional numeric column (Tmp$Num) with INTERSECT and EXCEPT as shown:

select <select_columns_or_alias> from
(select <first_select_columns_with_alias>,
 row_number() over(partition by
 <first_select_columns_without_alias> order by (select 1)) as Tmp$Num
 from ...
 { intersect | except }
 select <second_select_columns_with_alias>,
 row_number() over(partition by
 <second_select_columns_without_alias> order by (select 1)) as Tmp$Num
 from ...
) <sub query table name>

All duplicate rows are numbered in both SELECT statements in the new column Tmp$Num. This set no longer contains duplicates, and INTERSECT or EXCEPT can be used on the result sets now. Then the result is selected without the Tmp$Num column.

SQL Server examples:
Example 1:
SELECT col1, col2 FROM
(SELECT col1, col2, ROW_NUMBER()
 OVER(PARTITION BY col1, col2 ORDER BY (SELECT 1)) AS Tmp$Num FROM T1
 INTERSECT
 SELECT col1, col2, ROW_NUMBER()
 OVER(PARTITION BY col1, col2 ORDER BY (SELECT 1)) AS Tmp$Num FROM T2
) r3

Example 2:
SELECT col1, col2 FROM
(SELECT col1, col2, ROW_NUMBER()
 OVER(PARTITION BY col1, col2 ORDER BY (SELECT 1)) AS Tmp$Num FROM T1
 EXCEPT
 SELECT col1, col2, ROW_NUMBER()
 OVER(PARTITION BY col1, col2 ORDER BY (SELECT 1)) AS Tmp$Num FROM T2
) r3

Issue: EXCEPT DISTINCT, INTERSECT DISTINCT, and UNION DISTINCT Operators
Sybase ASA has EXCEPT DISTINCT and INTERSECT DISTINCT to eliminate duplicate rows before the intersection or exception between the result sets is computed.

Sybase ASA examples:
Example 1:
SELECT col1, col2
FROM T1
INTERSECT DISTINCT
SELECT col1, col2
FROM T2

Example 2:
SELECT col1, col2
FROM T1
EXCEPT DISTINCT
SELECT col1, col2
FROM T2

Example 3:
SELECT col1, col2
FROM T1
UNION DISTINCT
SELECT col1, col2
FROM T2

Solution:
The Sybase ASA EXCEPT DISTINCT operator is identical to EXCEPT and INTERSECT. DISTINCT is identical to INTERSECT. UNION DISTINCT is identical to UNION. Use EXCEPT, INTERSECT, and UNION without the DISTINCT keyword in SQL Server.

SQL Server examples:
Example 1:
SELECT col1, col2
FROM T1
INTERSECT
SELECT col1, col2
FROM T2

Example 2:
SELECT col1, col2
FROM T1
EXCEPT
SELECT col1, col2
FROM T2

Example 3:
SELECT col1, col2
FROM T1
UNION
SELECT col1, col2
FROM T2

Issue: Non-ANSI Joins
Sybase ASA supports non-ANSI outer join syntax (*= or =*).

Sybase ASA example:
SELECT first_name, last_name, order_date, quantity
FROM customers, sales_orders
WHERE customers.id *= sales_orders.customer_id
ORDER BY order_date

Solution:
Rewrite the joins to ANSI format. If the specified condition is (*=), the joins are converted to LEFT OUTER JOIN. If the condition is (=*), the joins are converted to RIGHT OUTER JOIN.

SQL Server example:
SELECT first_name, last_name, order_date, quantity
FROM customers LEFT OUTER JOIN sales_orders
ON customers.id = sales_orders. customer_id
ORDER BY order_date

Issue: NATURAL Joins
If a natural join is specified, Sybase ASA generates a join condition based on columns with the same name.

Sybase ASA example:
SELECT first_name, last_name, dept_name
FROM employees NATURAL JOIN departments

Solution:
Convert NATURAL to ON with equal conditions for all columns of two tables that have the same name.

SQL Server example:
SELECT first_name, last_name, dept_name
FROM employees INNER JOIN departments
ON employees.emp_id = departments.emp_id

Issue: Natural Joins with an ON Phrase
If both a NATURAL JOIN and a join condition are specified in an ON phrase in Sybase ASA, the result is the conjunction of the two join conditions.

Sybase ASA example:
SELECT first_name, last_name, dept_name
FROM employees NATURAL JOIN departments
ON employee.manager_id = department.dept_head_id

Solution:
Add a condition of equality to ON for all columns of two tables that have the same name.

SQL Server example:
SELECT first_name, last_name, dept_name
FROM employees INNER JOIN departments
ON employees.manager_id = departments.dept_head_id
AND employees.emp_id = departments.emp_id

Issue: KEY Joins
If a key join is specified, Sybase ASA generates a join condition based on the foreign key relationships in the database. A key join is the default if only the keyword JOIN is used.

Sybase ASA example:
SELECT *
FROM product KEY JOIN sales_order_items

SELECT employee.emp_lname, ky_dept_id.dept_name
FROM (employee KEY JOIN department as ky_dept_id)
 KEY JOIN sales_order

Solution:
Convert KEY to ON with equal conditions for the columns that make a foreign key relationship between two tables.

SQL Server example:
SELECT *
FROM product JOIN sales_order_items
ON sales_order_items.prod_id = product.id

SELECT employee.emp_lname, department.dept_name
FROM (employee JOIN department
 ON (employee.dept_id = department.dept_id))
JOIN sales_order
 ON (employee.emp_id = sales_order.sales_rep)

Issue: Key Joins with an ON phrase
If both a KEY JOIN and a join condition are specified in an ON phrase in Sybase ASA, the result is the conjunction of the two join conditions.

Sybase ASA example:
SELECT *
FROM A KEY JOIN B
ON A.x = B.y

Solution:
Add a condition of equality to ON for the columns that make a foreign key relationship between two tables.

SQL Server example:
SELECT *
FROM A JOIN B
ON A.x = B.y AND A.w = B.z

[bookmark: _Toc237661258]Common Table Expressions
This section covers issues and solutions for conversion of Sybase ASA common table expressions, including recursive ones.

Issue: Common Table Expressions in an INSERT Statement
Common table expressions are permitted within a top-level SELECT statement in an INSERT statement in Sybase ASA. SQL Server does not allow an INSERT statement before the definition of the common table expression.

Sybase ASA example:
INSERT INTO employees (last_name, first_name, city)
 WITH contacts_cte(surname, givenname, city) AS
 (SELECT surname, givenname, city
 FROM contacts)
 SELECT surname, givenname, city
 FROM contacts_cte
 WHERE city != 'Atlanta'

Solution:
Place the INSERT statement before the SELECT that follows the common table expression.

SQL Server example:
 WITH contacts_cte(surname, givenname, city) AS
 (SELECT surname, givenname, city
 FROM contacts)
 INSERT INTO employees (last_name, first_name, city)
 SELECT surname, givenname, city
 FROM contacts_cte
 WHERE city != 'Atlanta'

Issue: RECURSIVE Keyword in Common Table Expressions
Sybase ASA syntax assumes to specify the keyword RECURSIVE when writing recursive queries by means of common table expressions. In SQL Server common table expressions do not require such keyword in recursive queries.

Sybase ASA example:
WITH RECURSIVE
 manager (emp_id, mangr_id,
 emp_fname, emp_lname, mgmt_level) AS
((SELECT emp_id, mangr_id,
 emp_fname, emp_lname, 0
 FROM employee AS e
 WHERE mangr_id = emp_id)
 UNION ALL
 (SELECT e.emp_id, e.mangr_id,
 e.emp_fname, e.emp_lname, m.mgmt_level + 1
 FROM employee AS e JOIN manager AS m
 ON e.mangr_id = m.emp_id
 AND e.mangr_id <> e.emp_id
 AND m.mgmt_level < 20))
SELECT * FROM manager
ORDER BY mgmt_level, emp_lname, emp_fname

Solution:
Ignore the keyword RECURSIVE.

SQL Server example:
WITH manager (emp_id, mangr_id,
 emp_fname, emp_lname, mgmt_level) AS
((SELECT emp_id, mangr_id,
 emp_fname, emp_lname, 0
 FROM employee AS e
 WHERE mangr_id = emp_id)
 UNION ALL
 (SELECT e.emp_id, e.mangr_id,
 e.emp_fname, e.emp_lname, m.mgmt_level + 1
 FROM employee AS e JOIN manager AS m
 ON e.mangr_id = m.emp_id
 AND e.mangr_id <> e.emp_id
 AND m.mgmt_level < 20))
SELECT * FROM manager
ORDER BY mgmt_level, emp_lname, emp_fname

[bookmark: _Toc237661259]DML Statements
This section covers issues and solutions for conversion of Sybase ASA DML statements.
Issue: WITH AUTO NAME Clause in the INSERT Statement
WITH AUTO NAME enables you to specify the column names in the SELECT statement only, rather than having to do it in both the INSERT and the SELECT statements. WITH AUTO NAME is used to simplify the syntax.

Sybase ASA example:
INSERT INTO T1
WITH AUTO NAME
SELECT col1, col2 FROM T2

Solution:
Ignore this clause or specify the columns explicitly.

SQL Server example:
INSERT INTO T1
SELECT col1, col2 FROM T2
or
INSERT INTO T1 (col1, col2)
SELECT col1, col2 FROM T2

Issue: Inserting Documents and Images
The xp_read_file system function is used in Sybase ASA to insert file contents into a table with a column of LONG BINARY data type.

Sybase ASA example:
INSERT INTO pictures (filename, picture)
VALUES ('portrait.gif',
 xp_read_file('portrait.gif'))

Solution:
Use the SQL Server BULK rowset provider for OPENROWSET to read data from a file. Use OPENROWSET with a simple SELECT statement.

SQL Server example:
INSERT INTO pictures([filename], picture)
 SELECT 'portrait.gif' as [filename],
 * FROM OPENROWSET(BULK N'C:\portrait.gif', SINGLE_BLOB) AS picture

Issue: ON EXISTING clause of the INSERT Statement
The ON EXISTING clause of the INSERT statement updates existing rows in a table, based on primary key lookup, with new values. If the corresponding row does not already exist in the table, it inserts the new row as usual. For rows that already exist in the table, it can be chosen to silently ignore the input row (SKIP), update the values in the input row (UPDATE), or generate an error message for duplicate key values (ERROR). If ON EXISTING is not specified, this is equivalent to specifying ON EXISTING ERROR.

Sybase ASA examples:
Example 1:
INSERT products
ON EXISTING ERROR
VALUES(701, 'Tee Shirt', 'Small', 'White', 30, 9.00)

Example 2:
INSERT products
ON EXISTING SKIP
VALUES(701, 'Tee Shirt', 'Small', 'White', 30, 9.00)

Example 3:
INSERT products
ON EXISTING UPDATE
VALUES(701, 'Tee Shirt', 'Small', 'White', 30, 9.00)

Solution:
If ON EXISTING ERROR is specified, ignore this clause.
If ON EXISTING SKIP is specified, define the primary key column or columns for the table and check to see whether there is already a key with the inserted value. Add the following check before the INSERT statement:

if not exists (select * from <table_name>
where <pk_column1> = pk_value1
and <pk_column2> = pk_value2
. . .
and <pk_columnN> = pk_valueN)

If ON EXISTING UPDATE is specified, define the primary key column or columns for the table, and if the inserted primary key value already exists, rewrite the INSERT statement into UPDATE one; otherwise use the INSERT statement:

if not exists (select * from <table_name>
where <pk_column1> = pk_value1
and <pk_column2> = pk_value2
. . .
and <pk_columnN> = pk_valueN)
insert <table_name>
values(value1, value2, . . . , valueN)
else
update <table_name>
set col1 = value1, col2 = value2, . . . , colN = valueN
where <pk_column1> = pk_value1
and <pk_column2> = pk_value2
. . .
and <pk_columnN> = pk_valueN

SQL Server examples:
Example 1:
INSERT products
VALUES(701, 'Tee Shirt', 'Small', 'White', 30, 9.00)

Example 2:
IF NOT EXISTS (SELECT * FROM products
WHERE id = 701)
INSERT products
VALUES(701, 'Tee Shirt', 'Small', 'White', 30, 9.00)

Example 3:
IF NOT EXISTS (SELECT * FROM products
WHERE id = 701)
INSERT products
VALUES(701, 'Tee Shirt', 'Small', 'White', 30, 9.00)
ELSE
UPDATE products
SET name = 'Tee Shirt', size = 'Small', color = 'White', quantity = 30, unit_price = 9.00
WHERE id = 701

Issue: Inserting NULL Values
Sybase ASA allows null values to be entered implicitly. If no data is entered, and the column has no other default setting, NULL is entered. SQL Server requires null values to be entered explicitly if the column has no default setting.

Sybase ASA example:
INSERT INTO department (dept_id, dept_name)
VALUES (201, 'Eastern Sales')

Solution:
Enter the omitted column names and NULL values explicitly.

SQL Server example:
INSERT INTO department (dept_id, dept_name, dept_head_id)
VALUES (201, 'Eastern Sales', NULL)

[bookmark: _Toc237661260]Migrating Sybase ASA Standard Functions
This section describes how to map Sybase ASA standard functions to equivalent SQL Server functions, and it provides solutions for emulating Sybase ASA functions.
[bookmark: _Toc237661261]Equivalent Functions
The following Sybase ASA system functions are usable as they are, in SQL Server code:

ABS, ACOS, ASCII, ASIN, ATAN, ATN2, AVG, CAST, CEILING, CHAR, CHARINDEX, COALESCE, CONVERT, COS, COT, COUNT, DATALENGTH, DATEADD, DATEDIFF, DATENAME, DATEPART, DAY, DB_ID, DB_NAME, DEGREES, DENSE_RANK, DIFFERENCE, EXP, FLOOR, GETDATE, GROUPING, ISDATE, ISNULL, ISNUMERIC, LEFT, LOG, LOG10, LOWER, LTRIM, MAX, MIN, MONTH, NCHAR, NEWID, NULLIF, PATINDEX, PI, POWER, RADIANS, RAND, RANK, REPLACE, REPLICATE, REVERSE, RIGHT, ROUND, ROW_NUMBER, RTRIM, SIGN, SIN, SOUNDEX, SPACE, SQRT, STR, STUFF, SUM, TAN, TEXTPTR, UNICODE, UPPER, YEAR

[bookmark: _Toc237661262]Emulated Functions
The following Sybase ASA system functions can be emulated by using various SQL Server functions or Transact-SQL constructions.
ARGN(integer-expression, expression [, ...])
Returns a selected argument from a list of arguments.

Sybase ASA example:
select argn(4, 'a','b','c','d','e','f')

Solution:
In SQL Server, use the CASE function.

SQL Server example:
SELECT CASE 4
 WHEN 1 THEN 'a'
 WHEN 2 THEN 'b'
 WHEN 3 THEN 'c'
 WHEN 4 THEN 'd'
 WHEN 5 THEN 'e'
 WHEN 6 THEN 'f'
 END

ATAN2(numeric-expression-1, numeric-expression-2)
Returns the arc-tangent, in radians, of the ratio of two numbers.
Sybase ASA example:
atan2 (0.52, 0.60)

Solution:
In SQL Server, use the ATN2 function.

SQL Server example:
ATN2 (0.52, 0.60)

BYTE_LENGTH(string-expression)
Returns the number of bytes in a string.

Sybase ASA example:
byte_length('text');

Solution:
In SQL Server, use the DATALENGTH function.

SQL Server example:
datalength('text')

BYTE_SUBSTR(string-expression, start [, length])
Returns a substring of a string. The substring is calculated using bytes, not characters.

Sybase ASA example:
byte_substr('Test Message', 1, 4)

Solution:
In SQL Server, use the SUBSTRING function with byte data and single-byte characters strings. To emulate the behavior of this function with multibyte characters, write a user-defined function.

SQL Server example:
SUBSTRING('Test Message', 1, 4)

CHAR_LENGTH (string-expression)
Returns the number of characters in a string.

Sybase ASA example:
char_length('Chemical')

Solution:
In SQL Server, use the LEN function.

SQL Server example:
len('Chemical')

DATE (expression)
Converts the expression into a date, and removes any hours, minutes, or seconds.

Sybase ASA example:
date ('1999-01-02 21:20:53')

Solution:
In SQL Server, use the CAST function.

SQL Server example:
cast ('1999-01-02 21:20:53' as date)

DATETIME (expression)
Converts an expression into a timestamp.

Sybase ASA example:
datetime ('1998-09-09 12:12:12.000')

Solution:
In SQL Server, use the CAST function.

SQL Server example:
cast ('1998-09-09 12:12:12.000' as datetime)

DAYNAME(date-expression)
Returns the name of the day of the week from a date.

Sybase ASA example:
dayname ('1987/05/02')

Solution:
In SQL Server, use the DATENAME function with a datepart of dw.

SQL Server example:
datename (dw,'1987/05/02')

DOW(date-expression)
Returns a number from 1 to 7 representing the day of the week of a date, where Sunday=1, Monday=2, and so on. The DOW function is not affected by the value specified for the first_day_of_week database option. For example, even if first_day_of_week is set to Monday, the DOW function returns a 2 for Monday.

Sybase ASA example:
dow ('1998-07-09')

Solution:
In SQL Server, use the following CASE construction.

SQL Server example:
CASE WHEN (datepart(dw, '1998-07-09') + @@datefirst > 7)
 THEN datepart(dw, '1998-07-09') + @@datefirst - 7
 ELSE datepart(dw, '1998-07-09') + @@datefirst
END

GREATER (expression-1, expression-2)
Returns the greater of two parameter values.

Sybase ASA example:
greater (10, 5)

Solution:
In SQL Server, use the CASE function.

SQL Server example:
case when 10>5 then 10 else 5 end

HOUR (datetime-expression)
Returns the hour component of a datetime value.

Sybase ASA example:
hour('1998-07-09 21:12:13')

Solution:
In SQL Server, emulate this function by using the DATEPART function with a datepart of hh.

SQL Server example:
datepart(hh, '1998-07-09 21:12:13')

IDENTITY (expression)
Generates integer values, starting at 1, for each successive row in a query.

Sybase ASA example:
identity(10)

Solution:
In SQL Server, use the ROW_NUMBER function.

SQL Server example:
row_number() over(order by (select 1))

IFNULL(expression-1, expression-2[,expression-3])
If the first expression is the NULL value, then the value of the second expression is returned. If the first expression is not NULL, the value of the third expression is returned. If the first expression is not NULL and there is no third expression, NULL is returned.

Sybase ASA example:
ifnull (null, 1, 2)
ifnull (5, 1)

Solution:
In SQL Server, use the CASE function.

SQL Server example:
CASE WHEN NULL IS NULL THEN 1 ELSE 2 END
CASE WHEN 5 IS NULL THEN 1 ELSE NULL END

INSERTSTR(integer-expression, string-expression-1, string-expression-2)
Inserts a string into another string at a specified position.

Sybase ASA example:
insertstr (4, 'ABC><EFG', 'D')

Solution:
In SQL Server, use the SUBSTRING and concatenate (+) functions.

SQL Server example:
SUBSTRING('ABC><EFG', 1,4) + ‘D’ + SUBSTRING('ABC><EFG', 4+1, LEN ('ABC><EFG')-4)

LCASE(string-expression)
Converts all characters in a string to lowercase.

Sybase ASA example:
lcase ('ChoCOlatE')

Solution:
In SQL Server, use the LOWER function.

SQL Server example:
LOWER ('ChoCOlatE')

LENGTH (string-expression)
Returns the number of characters in a string.

Sybase ASA example:
length('ChoCOlatE')

Solution:
In SQL Server, use the LEN function.

SQL Server example:
len('ChoCOlatE')

LESSER (expression-1, expression-2)
Returns the lesser of two parameter values.

Sybase ASA example:
lesser (10, 5)

Solution:
In SQL Server, use the CASE function.

SQL Server example:
CASE WHEN 10<5 THEN 10 ELSE 5 END

LOCATE (string-expression-1, string-expression-2 [, integer-expression])
Returns the position of one string within another.

Sybase ASA example:
locate ('Test Message', 't', 3)

Solution:
In SQL Server, use the CHARINDEX function.
Note: Because CHARINDEX does not allow negative-integer expressions, you should create a custom user-defined function to reproduce this behavior.

SQL Server example:
charindex ('t', 'Test Message', 3)

MINUTE (datetime-expression)
Returns the minute component of a datetime.

Sybase ASA example:
minute('1998-07-09 21:12:13')

Solution:
In SQL Server, use the DATEPART function with a datepart of mi.

SQL Server example:
DATEPART(mi, '1998-07-09 21:12:13')

MOD (dividend, divisor)
Returns the remainder when one whole number is divided by another.

Sybase ASA example:
mod(5, 3)

Solution:
In SQL Server, use the % operator.

SQL Server example:
5 % 3

MONTHNAME (date-expression)
Returns the name of the month from a date.

Sybase ASA example:
monthname('1987/05/02')

Solution:
In SQL Server, use the DATENAME function with a datepart of month.

SQL Server example:
datename (month,'1987/05/02')

NOW(*)
Returns the current year, month, day, hour, minute, second, and fraction of a second.

Sybase ASA example:
now(*)

Solution:
In SQL Server, use the GETDATE function.

SQL Server example:
getdate()

NUMBER(*)
Generates numbers starting at 1 for each successive row in the results of the query.

Sybase ASA example:
number(*)

Solution:
In SQL Server, use the ROW_NUMBER function.

SQL Server example:
ROW_NUMBER() OVER(ORDER BY (SELECT 1))

QUARTER (datetime-expression)
Returns a number indicating the quarter of the year from the supplied date expression.

Sybase ASA example:
quarter ('1998-07-09 21:12:13')

Solution:
In SQL Server, use the DATEPART function with a datepart of q.

SQL Server example:
datepart(q, '1998-07-09 21:12:13')

REMAINDER (dividend, divisor)
Returns the remainder when one whole number is divided by another.

Sybase ASA example:
remainder (5, 3)

Solution:
In SQL Server, use the % operator.
SQL Server example:
5 % 3

REPEAT (expression1, expression2,…)
Concatenates a string a specified number of times.

Sybase ASA example:
repeat ('value', 3)

Solution:
In SQL Server, use the REPLICATE function.

SQL Server example:
REPLICATE ('value', 3)

SECOND (datetime-expression)
Returns the second of the given datetime value.

Sybase ASA example:
second ('1998-07-09 21:12:13')

Solution:
In SQL Server, use the DATEPART function with a datepart of ss.

SQL Server example:
second (ss, '1998-07-09 21:12:13')

STDDEV (numeric-expression)
Computes the standard deviation of a sample consisting of a numeric-expression.

Sybase ASA example:
stddev(somefield)

Solution:
In SQL Server, use the STDEV function.

SQL Server example:
stdev (somefield)

STDDEV_POP (numeric-expression)
Computes the standard deviation of a population consisting of a numeric-expression.

Sybase ASA example:
stddev_pop(somefield)

Solution:
In SQL Server, use the STDEVP function.

SQL Server example:
stdevp (somefield)

STDDEV_SAMP (numeric-expression)
Computes the standard deviation of a sample consisting of a numeric expression.

Sybase ASA example:
stddev_samp(somefield)

Solution:
In SQL Server, use the STDEV function.

SQL Server example:
stdev (somefield)

SUBSTRING(string-expression, start [, length])
Returns a substring of a string.

Sybase ASA example:
substring('Test Message', 1, 4)

Solution:
SUBSTRING exists in SQL Server, but it does not allow negative start and length. To fully emulate this behavior, you need to create a user-defined function extending functionality of substrting.

SQL Server example:
substring('Test Message', 1, 4)

TODAY(*)
Returns the current date.

Sybase ASA example:
today(*)

Solution:
In SQL Server, use the GETDATE function.

SQL Server example:
cast(getdate() as date)

TRIM (string-expression)
Removes leading and trailing blanks from a string.

Sybase ASA example:
trim (' chocolate ')

Solution:
In SQL Server, use the LTRIM and RTRIM functions one after another.

SQL Server example:
rtrim(ltrim(' chocolate '))

TRUNCNUM (numeric-expression, integer-expression)
Truncates a number at a specified number of places after the decimal point.

Sybase ASA example:
truncnum (655, -2)
truncnum (655.348, 2)

Solution:
In SQL Server, use the following CASE construction. Also you can implement this function as a user-defined function.

SQL Server example:
 CASE
 WHEN 655>=0 THEN
 FLOOR(655*power(CAST(10 AS float), -2))/power(CAST(10 AS float), -2)
 ELSE
 CEILING(655*power(CAST(10 AS float), -2))/power(CAST(10 AS float), -2)
 END

 CASE
 WHEN 655.348>=0 THEN
 FLOOR(655.348*power(CAST(10 AS float), 2))/power(CAST(10 AS float), 2)
 ELSE
 CEILING(655.348*power(CAST(10 AS float), 2))/power(CAST(10 AS float), 2)
 END

UCASE(string-expression)
Converts all characters in a string to uppercase.

Sybase ASA example:
ucase ('ChoCOlatE')

Solution:
In SQL Server, use the UPPER function.

SQL Server example:
UPPER ('ChoCOlatE')

VAR_POP (numeric-expression)
Computes the statistical variance of a population consisting of a numeric-expression.

Sybase ASA Example:
var_pop(somefield)

Solution:
In SQL Server, use the VARP function.

SQL Server example:
VARP (somefield)

VAR_SAMP (numeric-expression)
Computes the statistical variance of a sample consisting of a numeric-expression.

Sybase ASA example:
var_samp(somefield)

Solution:
In SQL Server, use the VAR function.

SQL Server example:
VAR (somefield)

VARIANCE (numeric-expression)
Computes the statistical variance of a sample consisting of a numeric-expression.

Sybase ASA example:
variance(somefield)

Solution:
In SQL Server, use the VAR function.

SQL Server example:
VAR (somefield)

[bookmark: _Toc237661263]Conclusion
This migration guide covers the differences between Sybase ASA and SQL Server 2008 database platforms, and it discusses the steps necessary to convert a Sybase ASA database to SQL Server.
[bookmark: _Toc237661264]About DB Best Technologies
DB Best Technologies is a leading provider of database and application migration services and custom software development. We have been focused on heterogeneous database environments (SQL Server, Oracle, Sybase, DB2, MySQL) since starting at 2002 in Silicon Valley. Today, with over 75 employees in the United States and Europe, we develop database tools and provide services to customers worldwide.
DB Best developed migration tools to automate conversion between SQL dialects. In 2005 Microsoft acquired this technology, which later became a family of SQL Server Migration Assistant (SSMA) products. We continue to develop new versions of SSMA, and support Microsoft customers who are migrating to SQL Server.
We also provide migration services covering all major steps of a typical migration project: complexity assessment, schema conversion, data migration, application conversion, testing, integration, deployment, performance tuning, training, and support.
For more details, visit us at www.dbbest.com, e-mail us at info@dbbest.com, or call 1-408-202-4567.

For more information:
http://www.microsoft.com/sqlserver/: SQL Server Web site
http://technet.microsoft.com/en-us/sqlserver/: SQL Server TechCenter
http://msdn.microsoft.com/en-us/sqlserver/: SQL Server DevCenter

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5 (excellent), how would you rate this paper and why have you given it this rating? For example:
· Are you rating it high due to having good examples, excellent screenshots, clear writing, or another reason?
· Are you rating it low due to poor examples, fuzzy screenshots, unclear writing?
This feedback will help us improve the quality of the white papers we release.
Send feedback.

image1.gif
ﬁ SICSL Server:2008

